A Novel Search Interval Forecasting Optimization Algorithm
نویسندگان
چکیده
In this paper, we propose a novel search interval forecasting (SIF) optimization algorithm for global numerical optimization. In the SIF algorithm, the information accumulated in the previous iteration of the evolution is utilized to forecast area where better optimization value can be located with the highest probability for the next searching operation. Five types of searching strategies are designed to accommodate different situations, which are determined by the history information. A suit of benchmark functions are used to test the SIF algorithm. The simulation results illustrate the good performance of SIF, especially for solving large scale optimization problems.
منابع مشابه
Interval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran
This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملپیش بینی شاخص بازار بورس تهران با استفاده از مدل سری زمانی فازی مرتبه بالا و الگوریتم شبیه سازی تبرید
During the recent years extensive researchs have been done on fuzzy time series. Since length of intervals affect the forecasting results in these models, doing research in this area became an interesting topic for time series researchers, there are some studies on this issue but their results are not good enough. In this study, we propose a novel simulated annealing heuristic algorithm is use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011